MO-Berechnungen an Heterocyclen, 4. Mitt.1:

Zum Einfluß der Ladungsterme in den Diagonalelementen der Hamilton-Matrix von self-consistent-Verfahren auf die Berechnung von π -Elektronendichten und Bindungslängen

Von

D. Heidrich und M. Scholz

Aus der Sektion Chemie der Karl Marx-Universität Leipzig

Mit 1 Abbildung

(Eingegangen am 17. Dezember 1969)

Mit SC_{β} - und $SC_{\alpha,\beta}$ -MO-Methoden werden die grundlegenden Einflüsse von Ladungstermen in der Hamilton-Diagonalmatrix auf π -Elektronendichten und Bindungslängen weiter studiert, insbesondere an N-Heterocyclen (Benzologe des Pyrrols und Pyridins). Im Vergleich mit erweiterten π -Elektronenansätzen vom SCF—PPP-Typ liefern die einfachen, auf einige wesentliche Terme reduzierten SC-Matrixelemente sehr gute Resultate.

The Influence of Charge Terms in the Hamilton Diagonal-Matrix of Self-Consistent Methods on the Calculation of π -Electron Densities and Bond Lengths

 SC_{β} - and $SC_{\alpha,\;\beta}$ -MO methods are applied to the study. Subjects of the calculations are N-heterocycles (pyrrole and pyridine series). Simple SC matrix elements, which were found to include the essential terms, give good results in π -electron densities and bond lengths.

 SC_{α} -, SC_{β} - und $SC_{\alpha,\beta}$ -Verfahren 2, 3, 4 erlauben zusammen ein systematisches Studium der grundsätzlichen Einflüsse der verschiedenen Ladungsterme in den Diagonalelementen der Hamilton-Matrix von SCF-Verfahren auf MO-Daten. Im folgenden werden die Auswirkungen der Berücksichtigung von ω -, ω' - und ω'' -Termen in den Diagonalelementen auf die Berechnung der π -Elektronendichten q_r und Bindungslängen R_{rs} innerhalb der $SC_{\alpha,\beta}$ -Methodik untersucht. Den Rechnungen liegen die in vorangegangenen Arbeiten 1, 2, 3 angegebenen

¹ 3. Mitt.: M. Scholz und D. Heidrich, Mh. Chem. 99, 588 (1968).

² M. Scholz und D. Heidrich, Z. Chem. 9, 41 (1969).

³ D. Heidrich und M. Scholz, Z. Chem. 9, 87 (1969).

⁴ D. Heidrich, Dissertation, Leipzig 1968.

SC-Gleichungssysteme [SC $_{\beta}$ -, SC $_{\alpha,\beta}$ (A)-, SC $_{\alpha,\beta}$ (B)- und SC $_{\alpha,\beta}$ (C)-MO-Verfahren*] und R_{rs} — p_{rs} -Beziehungen zugrunde.

I. Die Berechnung der SC-π-Elektronendichten

Untersuchungen des Einflusses der Elektronenwechselwirkungsterme der Diagonalelemente der Hamilton-Matrix mit ω -, ω' - und ω'' -Methoden (ohne Einschluß von SC_{β} -Beziehungen) sind für einige Kohlenwasserstoffe^{5, 6, 3} und Heterocyclen^{7, 2} angegeben worden. Allgemeiner gültige Aussagen erhält man, wenn man die Berechnungen im Rahmen einer $SC_{\alpha,\beta}$ -Methodik durchführt, wie es z. B. für Fulven³ bekannt ist. In den Tab. 1 und 2 werden nun auch solche Untersuchungen an den polaren Heterocyclen Pyrrol und Pyridin mitgeteilt.

Berücksichtigt man mit dem ω' - bzw. ω'' -Verfahren einmal Nachbarladungen, dann ist die Vernachlässigung weiter entfernter größerer π -Elektronenladungen im allgemeinen nicht vertretbar, zumindest dann nicht, wenn bei der Parameterwahl (ω' bzw. ω'') rein elektrostatische Betrachtungen zugrunde gelegt werden. Dies wird deutlich, wenn in den Tab. 1 (Pyrrol) und 2 (Pyridin) die Ergebnisse von ω' - und ω'' -Berechnungen unter Verwendung der elektrostatisch abgeschätzten Parameterwerte von $Kuhn^8$ ($\omega=1,4$ und $\omega'=0,93$ bzw. $\omega=1,4$; $\omega'=0,93$ und $\omega''=0,64$) miteinander verglichen werden (Spalten 2). Am Pyrrol ist der starke Unterschied beider Ansätze an der Umkehrung der jeweiligen q_2 — q_3 -Relationen sichtbar; am Pyridin resultiert aus der Anwendung des ω' -Verfahrens eine ungewöhnlich starke Alternanz der Ladungen und bei Verwendung der ω'' -Methode bei geringer Alternanz eine unrealistische Elektronenverschiebung zur 4-Position.

In weiteren Untersuchungen haben wir im ω' -Verfahren unabhängig von elektrostatischen Überlegungen den ω' -Parameter nach kleineren Werten variabel gehalten, um eine optimale Näherung an geeignete SCF-Ergebnisse zu erhalten (Abb. 1). Typisch ist die Abhängigkeit der Elektronendichtesequenzen der C-Atome 2 und 3 am Pyrrol von der Größe des ω' -Parameters (Abb. 1a). Für $\omega' > 0.6$ wird $q_2 > q_3$ erhalten.

^{*} $SC_{\alpha,\beta}(A)$: ω - + SC_{β} -Verfahren; $SC_{\alpha,\beta}(B)$: ω' - + SC_{β} -Verfahren; $SC_{\alpha,\beta}(C)$: ω'' - + SC_{β} -Verfahren; wobei das SC_{β} -Verfahren mit $\beta_{rs}^{i+1} = \beta_{rs} \exp\left[ax\left(p_{rs}^{i} - \frac{2}{3}\right)\right]$ angesetzt wurde (vgl. 3 , und zwar S. 94). In den Rechnungen werden für C- und N-Atome gleiche ω -Parameter benutzt; die Parameter der SC_{β} -Iterationsgleichung für C—C-Bindungen werden als ausreichende Näherungen für C—N-Bindungen betrachtet (vgl. auch 2 , 3).

⁵ A. Streitwieser, Jr., A. Heller und M. Feldmann, J. physic. Chem. **68**, 1224 (1964).

⁶ C. A. Coulson und F. Wille, Tetrahedron [London] 22, 3549 (1966).

⁷ M. Scholz und D. Heidrich, Mh. Chem. 98, 254 (1967).

⁸ H. Kuhn, Tetrahedron [London] 19, Suppl. 2, 88, 389, 437 (1963).

8						
N H	$\mathrm{SC}_{lpha,eta}(\mathrm{A})$ $\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}}}{\overset{\mathfrak{G}}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}}{\overset{\mathfrak{G}}}}{\overset{\mathfrak{G}}}}{\overset{\mathfrak{G}}}}}$	$\begin{array}{ccc} \mathrm{SC}_{\alpha,\beta}(\mathrm{B}) \\ \omega & \omega' \\ 1,4 & 0,93 \end{array}$	$SC_{\alpha,\beta}(C)$ ω ω ω' 1,4 0,93 0,64	$SC_{\alpha,\beta}(B)$ ω ω' 1,4 0,7	SCFa	SCF
$q_1 = 1,629$	1,803	1,783	1,776	1,791	1,719	1,737
$q_2 = 1,049$	1,024	1,073	1,039	1,057	1,070	1,077
q_3 1,137	1,074	1,036	1,073	1,047	1,071	1,054
μ_{π} [D] 3,1	1,7	1,3	1,8	1,4	2,0	1,6

a VESCF-Ergebnisse nach P. J. Black, R. D. Brown und M. L. Heffernan, Austral. J. Chem. 20, 1325 (1967).
b PPP—SCF-Ergebnisse nach P. Chiorboli, A. Rastelli und F. Momicchioli, Theoret. chim. Acta [Berl.] 5, 1 (1966).

der Hamilton-Matrix der SC. - Verfahrena auf Einfluß von Ladungstermen in \mathbf{Der}

die Ergebnisse am Pyridin	ω'' ω ω' ω' ω'' SCF $^{\circ}$ SCF $^{\circ}$	1,157 1,096	0.939 0.931 0.964 0.959	0,996	0,989	0,7 0,5 0,7
		1,08	0,96	36,0	0,98	0,5
	ω″ 0,4ι					
		1,157	0,931	0,996	0.989	0,7
	ω 1,4					
		138	939	600	296	7
yridir	ω 1,4	1,	0,	Ť,	0,	0,
am P	ω″ 1 0,64	5	1	-	~	
baisse	ω, L 0,93	1,15	0,937	0,98	1,00	0,7
Erge	ω 3 · 1,4					
die	ω ω' 1,4 0,93	1,200	928.0	1,064	0.920	9,0
	1,				•	
	ω 1,4	1,115	0,964	0,090	0,975	0,75
	НМО	1,195	0,923	1,004	0,950	1,1
	4 N 1 2	q_1	q_2	q_3	q_4	$\mu_{\pi} [\mathrm{D}]$
är Ch	: emie. Bd. 101/5					

^a Der Einschluß des SC_g-Verfahrens bringt am Pyridin keine nennenswerten Beiträge, so daß die Rechnungen auf den ^b VESCF-Ergebnisse nach P. J. Black, R. D. Brown and M. L. Heffernan, Austral. J. Chem. 20, 1305 (1967). SC_{α} -Ansatz beschränkt wurden.

° Ergebnisse aus einem erweiterten PPP-Typ-SCF-Verfahren von K. Nishimoto 9 (V α V β SCF).

Abb. 1 b weist nach, daß die Ladungen am Pyridin mit steigender Größe von ω' zunehmend alternieren, wobei diese Alternanz bis $\omega' \approx 0.7$ realistisch bleibt, dann aber stark zunimmt. Die ω' - bzw. ω'' -Rechnungen sind so in den Tab. 1 und 2 durch weitere mit geeigneter befundenen ω' - bzw. ω'' -Parametern ergänzt.

Die Durchrechnung der $SC_{\alpha,\beta}$ -Methoden A und B an zahlreichen N-Heterocyclen (Benzologen des Pyrrols und Pyridins) ergab gute Näherungen an die π -Elektronendichten aus geeigneten SCF-Verfahren:

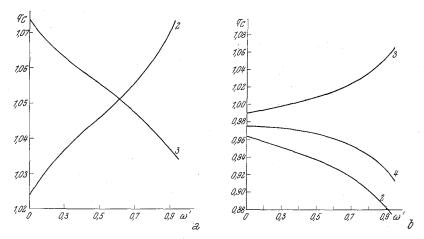


Abb. 1. Entwicklung der π -Elektronendichten am Pyrrol und Pyridin bei Variation des ω' -Parameters. a) Pyrrol: $SC_{\alpha,\ \beta}$ (B), $\omega=1,4,\ x=4,0,\ \omega'=$ variabel; b) Pyridin: SC_{α} , $\omega=1,4,\ \omega'=$ variabel

Während die Ergebnisse der $SC_{\alpha,\beta}$ -Methodik A an Pyrrol und seinen Benzologen durch die Anwendung von Methode B verbessert werden, ist für die Pyridinreihe schon mit der $SC_{\alpha,\beta}$ -Methodik A eine sehr gute Übereinstimmung erreicht, die durch den Einschluß von ω' -Termen [Übergang zur Methode $SC_{\alpha,\beta}$ (B)] wieder verschlechtert wird⁴. Die beinahe zahlenmäßige Übereinstimmung der $SC_{\alpha,\beta}$ (A)-Ergebnisse am Pyridin und Chinolin mit denen aus einem SCF-Ansatz von Nishimoto⁹ (Tab. 3), in welchem in Erweiterung der PPP-Methode auch die Kernintegrale α_r^c in den Diagonal- und β_{rs}^c in den Nichtdiagonal-Elementen der Hamilton-Matrix mit q_r bzw. p_{rs} geeignet self-consistent gemacht werden ($V\alpha V\beta SCF$), ist besonders augenfällig. Dies kann als Nachweis dafür gewertet werden, daß hier die Gesamtheit der Ladungsterme, mit Ausnahme des das jeweilige Zentrum selbst charakterisierenden $(n_r - q_r)$ -Terms der Diagonalelemente H_{rr} , keine nennenswerten Veränderungen in der π -Elektronenstruktur bewirkt.

⁹ K. Nishimoto, Theoret. chim. Acta [Berl.] 10, 65 (1968).

Tabelle 3. π-Elektronendichten einiger Verbindungen der Pyridinreihe

Verbindung	r	нмо	$SC_{\alpha, \beta}(A)^a$	VESCF b	VαVβSCF¢
	1	1,195	1,115	1,096	1,118
	2	0,923	0,964	0,964	0,959
Pyridin	3	1,004	0,990	0,997	0,988
	4	0,950	0,976	0,984	0,987
	1	1,216	1,134*	1,096	1,133
${f Chinolin}$	2	0,896	0,940	0,956	0,940
	3	1,009	0,994	1,002	0,999
5 4 a 4	4	0,932	0,971	0,981	0,976
6	5	0,989	0,997	1,001	0,995
	6	1,003	0,997	1,000	1,002
7 12	7	0,984	0,994	1,004	0,993
8 a N	8 .	1,013	1,000	1,003	0,998
	8a	0,957	0,978	0,976	0,968
	4a	1,002	0,994	1,001	0,998
Acridin	1	0,980	0,995*	0,998	
	2	1,007	0,998	0,999	
$\frac{8}{\lambda}$ $\frac{1}{\lambda}$	3	0,974	0,990	0,994	
7 8 a) 9 a 2	4	1,020	1,001	0,998	
	9	0,895	0,963	0,976	
6 10 a 4 a 3	10	1,254	1,151	1,107	
5 10 4	10a	0,940	0,964	0,971	
	8a	1,004	0,994	0,998	

a Parameter: $\omega = 1.0$; x = 4.0 (am Pyridin $\omega = 1.4$); mit * versehene Rechnungen sind mit der Genauigkeit | $q_r^{i+1} - q_r^i | \leq 0.002$, die übrigen mit ≤ 0.001 bestimmt.

II. Die Berechnung von Bindungslängen

Es gibt eine größere Anzahl sehr erfolgreicher Arbeiten, Bindungslängen von Kohlenwasserstoffen und Heterocyclen im Rahmen von π -Elektronennäherungen zu erfassen. Die dabei berechneten Bindungslängen R_{rs} sind in erster Linie von den für die β_{rs} — p_{rs} - bzw. β_{rs} — R_{rs} -Beziehungen gewählten Selbstkonsistenz-Vorschriften (und damit von den darin implizit enthaltenen σ -Bindungseinflüssen) abhängig. Darüber hinaus sind für nichtalternierende Kohlenwasserstoffe, Heteroverbindungen bzw. geladene Moleküle jedoch auch spezifische Einflüsse der diagonalen Ladungsterme in SCF- bzw. SC-Verfahren vorhanden. Dazu sind am nichtalternierenden Kohlenwasserstoff Fulven-Untersuchungen bekannt³. Es zeigt sich hier, daß für die Diagonalelemente H_{rr} allenfalls

^b VESCF-Ergebnisse nach P. J. Black, R. D. Brown und M. L. Heffernan, Austral. J. Chem. 20, 1305 (1967).

^c VαVβSCF-Verfahren nach Nishimoto⁹.

die Berücksichtigung der Ladungen (n_r-q_r) der betr. Atome selbst nennenswerten Einfluß besitzt (ω -Verfahren). An verschiedenen Hetero-

Tabelle 4. Bindungslängen (in Å) für einige N-Heterocyclen aus dem SC_{β} und den $SC_{\alpha,\,\beta}$ -Verfahren A und B

	Bin-	SC_β	$SC_{\alpha, \beta}(A)$	$SC_{\alpha, \beta}(B)$		
Heterocyclus	dung		$\omega = 1.4$	$\omega = 1.4$	exp.	SCFa
22000200300	rs	x = 4,0	x = 4.0	$\omega' = 0,7$	cap.	DOL
			x = 4,0	x = 4,2		
	12	1,376 b	1,386	1,386	1,383 d	1,388
Pyrrol	23	1,367	1,362	1,362	1,371	1,359
	3—4	1,432	1,436	1,437	1,429	1,439
	$1-\!\!\!-2$	1,382 c	1,391	1,391		1,388
\mathbf{Indol}	1—7 a	1,385	1,392	1,393		1,390
	23	1,362	1,358	1,358		1,356
4 3a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3—3 a	1,442	1,445	1,445		1,451
5	4-3a	1,414	1,413	1,414		1,419
>2	45	1,385	1,386	1,386		1,379
6 N	56	1,410	1,408	1,409		1,415
7 7a 1N	67	1,386	1,388	1,387		1,380
	77 a	1,412	1,409	1,410		1,418
	3a-7a	1,406	1,405	1,404	•	1,394
	12	1,335	1,334	1,334	1,340 e	1,331
Pyridin	2—3	1,396	1,397	1,397	1,395	1.400
·	. 34	1,398	1,397	1,398	1,394	1,395
		x=4,2 f	$\omega = 1.0 f$			
	12	1,371	1,371	1,370	$1,360\mathrm{g}$	1,366
•	1-9a	$1,\!434$	1,433	1,435	1,429	1,439
	23	1,430	1,429	1,431	1,428	$1,\!436$
Acridin	3-4	1,371	1,372	1,370	1,359	1,361
	4-4a	1,433	1,433	$1,\!434$	1,434	1,447
	9—9 a	1,404	1,404	1,404	1,398	1,402
	10a—8a	1,343	1,341	1,341	1,348	1,335
	10—4a	1,424	1,424	1,424	1,434	1,421

^a V β SCF-Angaben nach M.~J.~S.~Dewar und G.~J.~Gleicher,~J.~Chem. Physics **44**, 759 (1966).

^b D. Heidrich und M. Scholz, Mh. Chem. **98**, 264 (1967).

c Vgl. 3.

d Angaben nach B. Bak, D. Christensen, L. Hansen-Nygaard und J. Rastrup-Andersen, J. Chem. Physics 24, 720 (1956).

e Angaben nach B. Bak, L. Hansen-Nygaard und J. Rastrup-Andersen, J. Molec. Spectr. 2, 361 (1958).

f Die Änderungen der im Tabellenkopf angegebenen Parameter sind für die Berechnung der R_{18} ohne Bedeutung.

g D. C. Phillips, F. R. Almed und W. H. Barnes, Acta Cryst. 13, 365 (1960).

cyclen ergeben sich — zumindest im Bereich der Heterobindungen — größere π -Elektronenverschiebungen, deren Einfluß auf die Berechnung der Bindungslängen entsprechend wächst.

Im folgenden werden weitere SC-Berechnungen an Heterocyclen der behandelten Typen angegeben, die sich an bisherige Ergebnisse³ anschließen (Tab. 4 und 5). Die Rechnungen bestätigen die bereits ge-

Tabelle 5. Anwendung des SC_{β} - und $SC_{\alpha,\,\beta}$ -Verfahrens zur Bestimmung der Bindungslängen (in Å) weiterer N-Heterocyclen

Heterocyclus	Bindung r—s	$ ext{SC}_{eta} \ x = 4.0$	$SC_{\alpha, \beta}(B)$ $\omega = 1.4; \ \omega' = 0.7$ $x = 4.2^{b}$	VβSCF a
Indolizin	1—2 1—8 a 2—3 3—4	1,421 1,384 1,374 1,374	1,426 1,377 1,369 1,382	
7 6 N 6 4 3	4—5 4—8a 5—6 6—7 7—8	1,389 1,381 1,351 1,441 1,365	1,398 1,389 1,357 1,448 1,361	
Carbazol 6 4 b 7 8 a N H 1	8—8 a 1—2 1—9 a 2—3 3—4 4—4 a 9—9 a 9 a—4 a	1,442	1,447 1,394 1,406 1,406 1,389 1,409 1,397 1,404	1,394 1,400 1,400 1,393 1,404 1,415 1,400
9 Chinolin ^c	4a—4b 1—2 1—8a 2—3 3—4 4—4a 5—6 6—7 7—8	1,318 1,360 1,418 1,379 1,423 1,424 1,378 1,419 1,378	1,453 1,316 1,360 1,419 1,378 1,424 1,425 1,377 1,420 1,377	1,464 1,314 1,352 1,424 1,374 1,424 1,429 1,373 1,426 1,370
	8—8a 8a—4a	$1,423 \\ 1,413$	$1,424 \\ 1,413$	1,436 $1,409$

^a V β SCF-Ergebnisse nach M.~J.~S.~Dewar und G.~J.~Gleicher,~J.~Chem. Physics **44**, 759 (1966).

^b Die Abweichung von x=4,2 gegenüber 4,0 (Spalte 1) schränkt die Vergleichbarkeit hier nicht ein.

^c Betr. Atomnummern s. Tab. 3.

troffenen Feststellungen³ und erlauben folgende Erweiterung und Verallgemeinerung der Aussagen:

- 1. Zwischen den Resultaten der $SC_{\alpha, \beta}$ -Methoden A und B bestehen in keinem untersuchten Fall erwähnenswerte Unterschiede, d. h. auch in Molekülen mit größeren π -Ladungstrennungen hat bereits die Berücksichtigung von direkten Nachbarladungen in den Hamilton-Diagonal-elementen für die Bindungslängenberechnung keine Bedeutung mehr.
- 2. An Heterocyclen vom Pyridin-Typ besteht zusätzlich kein nennenswerter Unterschied zwischen den nach den $SC_{\alpha,\,\beta}$ -Verfahren A und B und dem SC_{β} -Verfahren berechneten Bindungslängen. Die β_{rs} — p_{rs} -Selbstkonsistenz-Beziehung ist somit für diesen heterocyclischen Verbindungstyp für die Berechnung von Bindungslängen allein maßgebend.
- 3. In der Pyrrolreihe existieren Differenzen bei der Bindungslängenbestimmung zwischen der SC_{β} und der $SC_{\alpha,\,\beta}$ -Methode A, die an der Heterobindung selbst am größten sind und dort bis 0,01 Å anwachsen können (Tab. 4).
- 4. An den Heterocyclen, bei welchen experimentelle Werte bekannt sind, ist die Übereinstimmung der Bindungslängen mit den SC-MO-Ergebnissen sehr gut und hält den Vergleichen mit V β SCF-Ergebnissen stand (Tab. 4). Die Gegenüberstellung der weiteren Resultate (Tab. 5) mit V β SCF-Resultaten bestätigt das. Diese gute Übereinstimmung mit V β SCF-Ergebnissen und experimentellen Angaben weist einerseits den bereits ausreichenden Näherungsgrad des gewählten einfachen SC β bzw. des SC α , β -Verfahrens A an die erweiterten SCF-PPP-Methoden bei der Berechnung von Bindungslängen nach und zeigt andererseits die Möglichkeit, hierbei für Heterobindungen mit der einfachen Vorstellung konstanter, implizit erfaßter σ -Bindungseinflüsse operieren zu können (wobei allerdings zur Bekräftigung der Aussagen in der Pyrrolreihe noch zu wenig experimentelles Material vorliegt).